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EFFICIENT SHOCK CAPTURING FOR ISENTROPIC 
FLOWS USING ARITHMETIC AVERAGING 

P. GLAISTER 

Department of Mathematics, PO Box 220, University of Reading, Reading, RG6 2AX, UK 

ABSTRACT 
A shock capturing scheme is presented for the equations of isentropic flow based on upwind differencing 
applied to a locally linearized set of Riemann problems. This includes the two-dimensional shallow water 
equations using the familiar gas dynamics analogy. An average of the flow variables across the interface 
between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency, 
leading to arithmetic averaging. This is in contrast to usual 'square root' averages found in this type of 
Riemann solver where the computational expense can be prohibitive. The scheme is applied to a 
two-dimensional dam-break problem and the approximate solution compares well with those given by 
other authors. 
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INTRODUCTION 

For many compressible flow simulations the governing equations are assumed to be the Euler 
equations. However, for some problems, e.g. the flow of natural gas in a pipe, it is sufficient to 
use the equations of isentropic flow. In particular, using the familiar gas dynamics analogy, the 
isentropic flow equations give rise to the two-dimensional shallow water equations. 

In a recent paper1 a linearized Riemann solver was presented for the two-dimensional shallow 
water equations. This work built on the ideas of earlier work on Riemann solvers for the Euler 
equations of compressible flow2,3. In this paper a new scheme is presented for the equations of 
isentropic flow, including the two-dimensional shallow water equations, that incorporates the 
ideas mentioned earlier for the Euler equations and the shallow water equations. There is one 
distinct difference, however, between the Riemann solver presented here and the Riemann 
solvers1-3. Riemann solvers of this type require averages of the flow variables across the interface 
between adjacent computational cells, and a 'square root' average is utilized to make shock (or 
bore) capturing automatic1-3. In this work, the arithmetic mean is chosen as the required average, 
whilst still retaining the crucial shock (or bore) capturing property. This results in an efficient 
scheme which is in contrast to schemes involving the 'square root' whose computational cost 
can be prohibitive. Although the derivation of this scheme is detailed, its implementation is 
straightforward. An extension is given for shallow water flows in a channel where friction terms 
are included and the bottom slope of the channel is non-zero. The resulting algorithm is efficient 
and produces satisfactory results for a two-dimensional dam-break problem and the results 
compare well with those given by other authors4,5. 
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GOVERNING EQUATIONS 

The three-dimensional equations of isentropic flow of a compressible fluid can be written in 
conservation form as: 

wt + Fx + Gy + Hr = 0 (1) 
where 

w = (p, pu, pv, pw)T (2a) 
F(w) = (pu, p + pu2, puv, puw)T (2b) 

and 
G(w) = (pv, pvu, p + pv2, pvw)T (2c) 
H(w) = (pw, pwu, pwv, p + pw2)T (2d) 

The quantities (p, u, v, w, p)(x, y, z, t) represent the density, the velocity in the three coordinate 
directions, and the pressure at a general position x, y, z and at time t. In addition, we assume 
a gas law of the form: 

P = P(P) (3) 

OPERATOR SPLITTING 

We solve (1) using a Riemann solver which we develop shortly, together with the technique of 
operator splitting6, i.e. we solve successively: 

wt + Fx = 0 (4a) 
wt + Gy = 0 (4b) 

and 
wt + Hz = 0 (4c) 

along x-, y- and z-coordinate lines, respectively. 
We give the scheme for the solution of (4a) and the scheme for the solution of (4b) and (4c) 

will then follow by symmetry. 

LINEARIZED RIEMANN PROBLEM 

If the approximate solution of (4a) is sought along a line y = y0, z = z0 using a finite difference 
method, then the solution is known at a set of discrete mesh points (x, y, z, t) = (xj, y0,, z0,, tn) at 
any time t = tn. Following Godunov7 the approximate solution wn

j to w at (xj, y0, z0, tn) can be 

considered as a set of piecewise constants w = wn
j for xє at time tn where 

∆x = xj — xj-1 is a constant mesh spacing. A Riemann problem is now present at each interface 
xj-1/2 = ½ ( x j - i + xj) separating adjacent states wn

j-1, wn
j. If (4a) is linearized by considering the 

Jacobian matrix of the flux function F to be constant in each interval (xj-1,xj), the resulting 
equations can be solved approximately using explicit time stepping. The time step At is restricted 
so that the solutions of adjacent Riemann problems do not interact. The scalar problems that 
result from this analysis can be solved by upwind differencing; however, an approximate Jacobian 
matrix needs to be constructed in each interval so that shock-capturing is automatic. 
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APPROXIMATE RIEMANN SOLVER 

Structure 
The Jacobian matrix: 

of the flux function F(w) has eigenvalues λi with corresponding eigenvectors ej, i = 1,2,3,4 
given by: 

λ1 = u + a e1 = (1,u + a,v,w)T (6a) 
λ2 = u-a e2 = (l,u-a,v, w)T (6b) 

λ3 = u e3 = (0 ,0 , l ,0) T (6c) 
λ4 = u e4 = (0,0,0,1)T (6d) 

where the sound speed a is given by: 

a2 = dp(p)/dp (6a) 

using the gas law (3). This information can be used to develop approximate solutions of the 
Riemann problem in the previous section. 

Shock capturing 
Consider two adjacent states wL, wR (left and right) given at either end of the cell (xL, xR) on 

an x-coordinate line y = y0, z = z0 and consider also the algebraic problem of finding an 
approximate Jacobian = (wL, wR) in this cell such that: 

∆w = ∆F (7) 

where ∆(•) = (•)R — (•)L, W = (p, pu, pv, pw)T and F = (pu, p + pu2, puv, puw)T. A solution to 
this problem, for arbitrary jumps Aw, can be used to obtain a conservative scheme with good 
shock-capturing properties. 

Construction of 
To determine the matrix we first write ∆w and ∆F in terms of ∆u, where u = (p, u, v, w)T 

can be thought of as a parameter or intermediate vector3. Following the identities: 
∆p = ∆p (8) 

∆ ( p U ) = ∆U+ ∆p, U = u,v,w (9a-c) 

where 

= ½(PL + PR) (10) 
= ½(UL+UR) U = u,v,w (11a-c) 

the arithmetic mean of left and right states, we can write: 

∆w= ∆u (12) 
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where 

Similarly, 

where 
= ½U2

L+U2
R), U = u,v,w (15a-c) 

the arithmetic mean of the square of the velocity components, and: 
∆p = ∆p (16) 

where 

Finally 

and 

where 

and 
= ½(uLwL + uRwR) (19b) 

and are given above (N.B. The choice in (18a-b) is made so that the eigenvalues of 
the approximate Jacobian have the simplest possible form. In particular, has as two 
eigenvalues.) Combining (9a-c), (14a-c), (16) and (18a-b) gives: 

∆F = ∆u (20) 
where 

and thus from (12) and (20): 
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Therefore a solution of (7) is obtained with the approximate Jacobian: 

The terms can be simplified, however, since: 

where 

is the geometric mean of left and right states, and 

say. Similarly, 

Hence 

is the required average Jacobian satisfying (6a), with given by (10), 
(11a-c), (16), (25) and (26a-b). Clearly, as WL, WR → W then the continuous Jacobian. 

Approximate eigenvalues and eigenvectors 
Now, the important quantities that are needed for the scheme are the eigenvalues λi and 

eigenvectors of and it is a simple matter to show that these are given by: 

= (0,0,1,0)T (29c) 
and 

= (0,0,0,1)T (29d) 
where 

(We have used the identities = ¼∆u∆v and 
¼∆u∆w in determining these.) 
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Projection 
Finally, it is necessary to project a general jump Aw onto the eigenvectors as: 

and by virtue of (6a) we then have: 

Solving (7) gives: 

and 

Numerical scheme 
Thus in (4a) we can approximate: 

by virtue of the analysis of this section. Applying upwind differencing to (4a) using the 
approximation in (34a) then gives: 

refers to the cell [x j - 1 ,x j] and 

represent the positive and negative parts of This gives the following first order algorithm for 
the solution of (4a): 
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Hence the only quantities required for the algorithm are: 

= (0,0,1,0)T 

= (0,0,0,1)T 

where 
= ½(UR + UR), U = u,v,w 

= ½(PL + PR) 
and 

so that only one square root is taken in each computational cell. Thus, we note the direction of 
flow of information given by the approximate eigenvalues and use this information to update 
the solution consistent with the theory of characteristics of (1). In addition, second order transfers 
of these first order increments can be made to achieve higher accuracy, providing they are limited 
to maintain monotonicity8. The use of these 'flux-limiters' improves accuracy without introducing 
non-physical spurious oscillations, especially at shocks. A similar analysis applies for the scheme 
for solving (4b-c). 

Finally, to avoid entropy-violating solutions, the first order increment can be considered as 
two separate increments being sent to either end of the cell. Specifically, the modified version 
of the scheme can be written cell-wise as: 

where 

and 
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The expressions are given by: 

where and these will be different for a rarefaction wave. 

EXTENSIONS 

Employing the familiar gas-dynamics analogy, the two-dimensional form of (l)-(3) give rise to 
the shallow water equations, viz.: 

wt, + Fx + Gy = f + g (40) 
where 

w = (p, pu, pv)T (41a) 
F = (pu, p2/2 + pu2, puv)T (41b) 
G = (pv, pvu, p2/2 + pv2)T (41c) 

and the 'gas law' p = ½p2 has been used. The quantities p, u and v denote g multiplied by the 
height of water above the bottom of a channel of undisturbed depth h(x, y), and the velocity 
components of the fluid, where g is the acceleration due to gravity. In addition, the source terms 
f, g (associated with the x- and y-directions, respectively) are given by: 

f=(0,gp(hx-sx),0)T (42a) 
and 

g = (0,0, gp(hy-sy))T (42b) 
where the quantities sx, sy are the slopes of the energy grade lines in the x- and y-directions, 
respectively, and are determined from the steady-state friction formulae: 

where n represents Manning's roughness coefficient. 
Equation (40) can be solved using the algorithm of the previous section with the modification 

that (4a) is replaced by: 
wt + Fx = f (44a) 

and similarly, (4b) is replaced by: 
wt + Gy = g (44b) 

(Note that the quantity given by (17a) becomes: 

which is consistent with the form in (17b) when pL = pR..) 
We follow the approach in Reference 1 and upwind the source term f. Specifically, 
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approximating f in the interval where 

and projecting: 

enables (44a) to be solved approximately. The first order algorithm can be written as in (36) 
where the are replaced by modified wavestrengths 

TEST PROBLEM 

This is a two-dimensional dam break problem with a non-symmetrical breach. The equations 
of flow are the two-dimensional isentropic equations where the gas dynamics analogy with the 
shallow water equations has been employed (see above). The computational domain is defined 
by a channel 200 m long x 200 m wide and the non-symmetrical breach is 75 m and the dam 
is 10 m thick, as shown in Figure 1. Initially, the water is at different heights p0, p1 either side 
of the breach. For comparison purposes with other algorithms we consider a horizontal, 
frictionless channel. 

NUMERICAL RESULTS 

Two sets of initial conditions are chosen here: (a) p1/g = 10, p0/g = 5; and (b) p1/g = 10, 
p0/g = 0.05, representing tailwater/reservoir height ratios of 0.5 and 0.005 respectively. The 
'Minmod' limiter8 has been used and a grid of 41 x 41 points results in a mesh size of 5 m by 
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5 m. The results displaying surface elevation contours for these two cases are shown in Figures 
2 and 3, respectively, at time t = 7.1 s. (N.B. The Figures display contours where the dam is 
still intact since it is not possible to mask these areas.) In both cases we see that the bore has 
developed well. Only in case (a) is there significant reflection from the wall. This compares 
favourably with the results where the bore is smeared over a number of cells4,5. It is noted by 
Fennema and Chaudry5 that many numerical schemes have difficulty in computing accurate 
solutions, if any, for small ratios of tailwater/reservoir height. We note, however, in computing 
these satisfactory results that we have not expended a great deal of effort in respect of computer 
time used, or even in storage requirements, merely the use of an efficient approximate Riemann 
solver. The results are also in agreement with those obtained by Glaister1. Using an Amdahl 
V7 with 41 x 41 mesh points and the 'Minmod' limiter takes 0.26 cpu seconds to compute one 
time step and a total of 9.1 cpu seconds to reach a real time of 7.1 s using 35 time steps. 

The boundary conditions at inflow are prescribed as the initial conditions, whilst on outflow 
all information is leaving the computational domain and therefore nothing has to be done. At 
rigid walls we employ reflecting boundary conditions, i.e. mesh points, and the resulting cell, 
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straddle a rigid wall boundary, and the surface elevation/density (and tangential velocity) is 
prescribed to be the same at each end of such a cell; whereas the normal velocity has the same 
magnitude, but opposite sign, at each end of such a cell. This enables the boundary conditions 
to be overwritten along rigid wall boundaries. 

CONCLUSIONS 

A conservative finite difference scheme is presented for the solution of the three-dimensional 
equations of isentropic flow based on flux difference splitting. By considering linearized Riemann 
problems, and solving these approximately using upwind differencing, enables the flow resulting 
from a dam-break to be predicted accurately. In particular, the use of particular cell averages 
of flow variables results in correct shock/bore speeds being attained, together with bore heights, 
and the resulting scheme is computationally efficient through the use of arithmetic averaging. 
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